Estimación del mercado de valores con base en las visitas a Wikipedia

Autores/as

  • Swarnava Mitra
  • José Nicanor Franco-Riquelme

Palabras clave:

Visitas a páginas de Wikipedia, mercado de valores, Fuzzy CoCo (método Cooperativo y Coevolutivo para la regla de Lógica Difusa)

Resumen

Este documento propone una metodología para estimar el movimiento de los principales índices de mercado y con base en las visitas a Wikipedia utilizando el algoritmo FuzzyCoCo. Estudios anteriores han demostrado que el aumento del número de visitas a las páginas de Wikipedia en temas relacionados con la economía y las finanzas tiene un efecto en los mercados financieros. Se eligieron tres categorías de temas, una relacionada con deudas económicas, hechos sociopolíticos y otra relacionada con información específica de la empresa. Se utilizó un período de datos históricos de 5 años, desde enero de 2010 hasta diciembre de 2014. Los datos financieros consistieron en los principales índices bursátiles de la UE y EE. UU., como el Promedio Industrial Dow Jones (DJIA) y el S&P500 para los mercados de EE. UU., y FTSE100 y DAX30 para los mercados de la UE, además de los precios de las acciones de Facebook, Apple Inc. y Citigroup. La serie temporal de visitas a la página se probó primero para una prueba de causalidad de Granger y luego se utilizó una variable exógena para predecir los movimientos del mercado junto con los indicadores técnicos de uso común. La principal contribución del trabajo radica en el uso de las páginas vistas de Wikipedia como un indicador basado en el sentimiento social para la predicción de los movimientos del mercado. Los niveles de precisión direccional logrados hacen que la metodología sea atractiva para ser utilizada por los inversores para incorporar el sentimiento general del mercado con respecto a la recesión económica y el malestar social.

Citas

Abdelbaki, H. H., 2013. The impact of arab spring on stock market performance. British Journal of Management & Economics 3 (3).

Antweiler, W., Frank, M. Z., 2004. Is all that talk just noise? The information content of internet stock message boards. The Journal of Finance 59 (3), 1259–1294.

Arias, M., Arratia, A., Xuriguera, R., 2013. Forecasting with twitter data. ACM Transactions on Intel ligent Systems and Technology (TIST) 5 (1), 8.

Bar-Haim, R., Dinur, E., Feldman, R., Fresko, M., Goldstein, G., 2011. Identifying and following expert investors in stock microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Asso- ciation for Computational Linguistics, pp. 1310–1319.

Bollen, J., Mao, H., Zeng, X., 2011. Twitter mood predicts the stock market. Journal of Computational Science 2 (1), 1–8.

Bollen, J., Pepe, A., Mao, H., 2009. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. arXiv preprint arXiv:0911.1583.

Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A., Weber, I., 2012. Web search queries can predict stock market volumes. PloS one 7 (7), e40014.

Chau, F., Deesomsak, R., Wang, J., 2014. Political uncertainty and stock market volatility in the middle east and north african (mena) countries. Journal of International Financial Markets, Institutions and Money 28, 1–19.

Das, S. R., Chen, M. Y., 2007. Yahoo! for amazon: Sentiment extraction from small talk on the web. Management Science 53 (9), 1375–1388.

Dimpfl, T., Jank, S., 2012. Can internet search queries help to predict stock market volatility? In: Paris December 2012 Finance Meeting EUROFIDAI- AFFI Paper.

Dzielinski, M., 2012. Measuring economic uncertainty and its impact on the stock market. Finance Research Letters 9 (3), 167–175.

Esteban-Gil, A., Garcia-Sanchez, F., Valencia-Garcia, R., Fernandez-Breis, J. T., 2012. Socialbroker: A collaborative social space for gathering semantically-enhanced financial information. Expert Systems with Applications 39 (10), 9715–9722.

Fama, E. F., 1970. Efficient capital markets: A review of theory and empirical work*. The journal of Finance 25 (2), 383–417.

Filis, G., Degiannakis, S., Floros, C., 2011. Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries. International Review of Financial Analysis 20 (3), 152–164.

Fung, G. P. C., Yu, J. X., Lam, W., 2003. Stock prediction: Integrating text mining approachusing real-time news. In: Computational Intel ligence for Financial Engineering, 2003. Proceedings. 2003 IEEE International Conference on. IEEE, pp. 395–402.

Granger, C. W., 1969. Investigating causal relations by econometric models and crossspectral methods. Econometrica: Journal of the Econometric Society, 424–438.

Groth, S. S., Muntermann, J., 2011. An intra day market risk management approach based on textual analysis. Decision Support Systems 50 (4), 680– 691.

Hadavandi, E., Shavandi, H., Ghanbari, A., 2010. Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based Systems 23 (8), 800–808.

Hogenbooma, F., de Wintera, M., Frasincara, F., Kaymakb, U., 2013. A news event-driven approach for the historical value at risk method. Expert Systems With Applications.

Hong, T., Han, I., 2002. Knowledge-based data mining of news information on the internet using cognitive maps and neural networks. Expert systems with applications 23 (1), 1–8.

Huang, S.-C., Chuang, P.-J., Wu, C.-F., Lai, H.-J., 2010. Chaos-based support vector regressions for exchange rate forecasting. Expert Systems with Applications 37 (12), 8590–8598.

Kara, Y., Boyacioglu, M. A., Baykan, O¨ . K., 2011. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange. Expert systems with Applications 38 (5), 5311–5319.

Karabulut, Y., 2013. Can Facebook predict stock market activity? In: AFA 2013 San Diego Meetings Paper.

Karr, C., 1991. Genetic algorithms for fuzzy controllers. Ai Expert 6 (2), 26–33. Kim, K.-j., 2003. Financial time series forecasting using support vector machines. Neurocomputing 55 (1), 307–319.

Kim, K.-j., Han, I., 2000. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert systems with Applications 19 (2), 125–132.

Kim, M. J., Han, I., Lee, K. C., 2004. Hybrid knowledge integration using the fuzzy genetic algorithm: Prediction of the korea stock price index. Intelligent Systems in Accounting, Finance and Management 12 (1), 43–60.

Kim, T., Jung, W.-J., Lee, S.-Y. T., 2014. The analysis on the relationship between firms exposures to sns and stock prices in Korea. Asia Pacific Journal of Information Systems 24 (2).

Kontopoulos, E., Berberidis, C., Dergiades, T., Bassiliades, N., 2013. Ontology- based sentiment analysis of twitter posts. Expert systems with applications 40 (10), 4065–4074.

Kuo, R. J., Chen, C., Hwang, Y., 2001. An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy sets and systems 118 (1), 21–45.

Liu, L., Wu, J., Li, P., Li, Q., 2015. A social-media-based approach to predicting stock comovement. Expert Systems with Applications.

Lo, A. W., 2004. The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. Journal of Portfolio Management 30, 15–29.

Lupiani-Ruiz, E., Garcia-Manotas, I., Valencia-Garcia, R., Garcia-Sanchez, F., CastellanosNieves, D., Fernandez-Breis, J. T., Camón-Herrero, J. B., 2011. Financial news semantic search engine. Expert systems with applications 38 (12), 15565–15572.

Mahajan, A., Dey, L., Haque, S. M., 2008. Mining financial news for major events and their impacts on the market. In: Web Intel ligence and Intel ligent Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on. Vol. 1. IEEE, pp. 423–426.

Maks, I., Vossen, P., 2012. A lexicon model for deep sentiment analysis and opinion mining applications. Decision Support Systems 53 (4), 680–688.

Mittermayer, M.-A., 2004. Forecasting intraday stock price trends with text min- ing techniques. In: System Sciences, 2004. Proceedings of the 37th Annual Hawaii International Conference on. IEEE, pp. 10–pp.

Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Stanley, H. E., Preis, T., 2013. Quantifying wikipedia usage patterns before stock market moves. Scientific reports 3.

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., Ngo, D. C. L., 2014. Text mining for market prediction: A systematic review. Expert Systems with Ap- plications 41 (16), 7653–7670.

Nassirtoussi, A. K., Aghabozorgi, S., Wah, T. Y., Ngo, D. C. L., 2015. Text mining of newseadlines for forex market prediction: A multi-layer dimension reduction algorithm with semantics and sentiment. Expert Systems with Applications 42 (1), 306–324.

Nizer, P., Nievola, J. C., 2012. Predicting published news effect in the brazilian stock market. Expert Systems with Applications 39 (12), 10674–10680.

Patel, J., Shah, S., Thakkar, P., Kotecha, K., 2015. Predicting stock market index using fusion of machine learning techniques. Expert Systems with Ap- plications 42 (4), 2162–2172.

Pena-Reyes, C. A., Sipper, M., 2001. Fuzzy CoCo: A cooperative-coevolutionary approach to fuzzy modeling. Fuzzy Systems, IEEE Transactions on 9 (5), 727–737.

Peramunetil leke, D., Wong, R. K., 2002. Currency exchange rate forecasting from news headlines. Australian Computer Science Communications 24 (2), 131–139.

Popov, A. A., Van Horen, N., 2013. The impact of sovereign debt exposure on bank lending: Evidence from the european debt crisis.

Potter, M. A., De Jong, K. A., 1994. A cooperative coevolutionary approach to function optimization. In: Paral lel problem solving from nature PPSN III. Springer, pp. 249–257.

Preis, T., Moat, H. S., Stanley, H. E., 2013. Quantifying trading behavior in financial markets using google trends. Scientific reports 3.

Rachlin, G., Last, M., Alberg, D., Kandel, A., 2007. Admiral: A data mining based financial trading system. In: Computational Intel ligence and Data Mining, 2007. CIDM 2007. IEEE Symposium on. IEEE, pp. 720–725.

Schumaker, R. P., Chen, H., 2009. Textual analysis of stock market prediction using breaking financial news: The azfin text system. ACM Transactions on Information Systems (TOIS) 27 (2), 12.

Soni, A., van Eck, N. J., Kaymak, U., 2007. Prediction of stock price movements based on concept map information. In: Computational Intelligence in Multicriteria Decision Making, IEEE Symposium on. IEEE, pp. 205–211.

Sprenger, T. O., Tumasjan, A., Sandner, P. G., Welpe, I. M., 2014. Tweets and trades: The information content of stock microblogs. European Financial Management 20 (5), 926–957.

Sprenger, T. O., Welpe, I. M., 2011. Tweets and peers: defining industry groups and strategic peers based on investor perceptions of stocks on twitter. Algorithmic Finance 1 (1), 57–76.

Tetlock, P. C., SAAR-TSECHANSKY, M., Macskassy, S., 2008. More than words: Quantifying language to measure firms’ fundamentals. The Journal of Finance 63 (3), 1437–1467.

Tsaih, R., Hsu, Y., Lai, C. C., 1998. Forecasting S&P 500 stock index futures with a hybrid ai system. Decision Support Systems 23 (2), 161–174.

Vlastakis, N., Markel los, R. N., 2012. Information demand and stock market volatility. Journal of Banking & Finance 36 (6), 1808–1821.

Vu, T.-T., Chang, S., Ha, Q. T., Collier, N., 2012. An experiment in integrating sentiment features for tech stock prediction in twitter.

Wang, S., Zhe, Z., Kang, Y., Wang, H., Chen, X., 2008. An ontology for causal relationships between news and financial instruments. Expert Systems with Applications 35 (3), 569–580.

Wuthrich, B., Cho, V., Leung, S., Permunetil leke, D., Sankaran, K., Zhang, J., 1998. Daily stock market forecast from textual web data. In: Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference on. Vol. 3. IEEE, pp. 2720–2725.

Xu, S. X., Zhang, X. M., 2013. Impact of wikipedia on market information environment: Evidence on management disclosure and investor reaction. Mis Quarterly 37 (4), 1043–1068.

Yu, Y., Duan, W., Cao, Q., 2013. The impact of social and conventional media on firm equity value: A sentiment analysis approach. Decision Support Systems 55 (4), 919–926.

Zhang, X., Fuehres, H., Gloor, P. A., 2012. Predicting asset value through Twitter buzz. In: Advances in Collective Intelligence 2011. Springer, pp. 23–34.

Descargas

Publicado

2021-09-22

Cómo citar

Mitra, S., & Franco-Riquelme, J. N. (2021). Estimación del mercado de valores con base en las visitas a Wikipedia. Arandu UTIC, 8(1), 97–116. Recuperado a partir de http://www.utic.edu.py/revista.ojs/index.php/revistas/article/view/127

Número

Sección

Artículos de investigación